DocumentCode :
3605009
Title :
Assessing the Relative Integrity of Formed Cardiac Linear Lesions by Recording Both Focal Monophasic Action Potentials and Contact Forces: A Technical Brief
Author :
Benscoter, Mark A. ; Iaizzo, Paul A.
Author_Institution :
Biomed. Eng. Dept., Univ. of Minnesota, Minneapolis, MN, USA
Volume :
3
fYear :
2015
fDate :
7/7/1905 12:00:00 AM
Firstpage :
1
Lastpage :
6
Abstract :
The use of therapeutic ablation in patients with atrial fibrillation has become a mainstay in the treatment of this disease, yet often these individuals require multiple procedures. In other words, successful first time treatments are impacted by challenges, including the generation of linear lesions in certain anatomies like the mitral isthmus of the left atrium. Hence, there is a need to find ways to address the presence of unwanted conduction gaps at the time of lesion creation. In this paper, we describe a novel approach to examine conduction gaps, by using a proof of concept device to examine local electrical activation within the cardiac areas of an applied lesion, i.e., to locate gaps in the lesion set. To accomplish this, both epicardial and endocardial linear ablation lines composed of spot lesions with conduction gaps were created in a porcine model. The forces necessary to elicit monophasic action potentials (MAP) were collected from >200 measurements on the epicardium of the right ventricle. Ablations were then performed on the ventricular epicardium and left atrial mitral isthmus endocardially, while recording MAPs. We were able to successfully demonstrate the use of a proof of concept device to identify conduction gaps in linear lesion sets; furthermore, we were able to determine required contact forces to appropriately determine focal electrical changes of the underlying tissues. New catheter designs that incorporate capabilities to record focal MAPs could be employed clinically to better assess a given lesion quality and/or to determine the existence of an undesired conduction gap.
Keywords :
bioelectric potentials; biological tissues; cardiology; catheters; diseases; electrical conductivity; Contact Forces:; atrial fibrillation patients; biological tissues; cardiac linear lesion relative integrity; catheter design; conduction gaps; disease treatment; endocardial linear ablation lines; epicardial linear ablation lines; focal monophasic action potentials; left atrial mitral isthmus; lesion quality; local electrical activation; porcine model; right ventricle; spot lesions; therapeutic ablation; ventricular epicardium; Atrial fibrillation; Catheters; Force; Heart; Lesions; Licenses; Radio frequency; Atrial fibrillation; atrial flutter; catheter ablation; coronary sinus; coronarysinus; mitral isthmus; monophasic action potential;
fLanguage :
English
Journal_Title :
Translational Engineering in Health and Medicine, IEEE Journal of
Publisher :
ieee
ISSN :
2168-2372
Type :
jour
DOI :
10.1109/JTEHM.2015.2473856
Filename :
7226776
Link To Document :
بازگشت