DocumentCode :
3606407
Title :
Efficient classification of ISAR images using 2d fourier transform and polar mapping
Author :
Sang-hong Park ; Joo-ho Jung ; Si-ho Kim ; Kyung-Tae Kim
Author_Institution :
Pukyong Nat. Univ., Busan, South Korea
Volume :
51
Issue :
3
fYear :
2015
fDate :
7/1/2015 12:00:00 AM
Firstpage :
1726
Lastpage :
1736
Abstract :
This paper proposes an efficient method to classify inverse synthetic aperture radar (ISAR) images. The proposed method achieves invariance to translation and rotation of ISAR images by using two-dimensional (2D) Fourier transform (FT) of ISAR images, polar mapping of the 2D FT image, and a simple nearest-neighbor classifier. In simulations using ISAR images measured in a compact range, the proposed method yielded high classification ratios with small-sized data regardless of the location of the rotation center, whereas the existing method was very sensitive to the location of it.
Keywords :
Fourier transforms; image classification; radar imaging; synthetic aperture radar; 2D Fourier transform; ISAR image classification; inverse synthetic aperture radar images; nearest-neighbor classifier; polar mapping; Correlation; Feature extraction; Fourier transforms; Frequency-domain analysis; Image coding; Marine vehicles; Training;
fLanguage :
English
Journal_Title :
Aerospace and Electronic Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9251
Type :
jour
DOI :
10.1109/TAES.2015.140184
Filename :
7272825
Link To Document :
بازگشت