DocumentCode :
3606414
Title :
An information theoretic approach to interacting multiple model estimation
Author :
Wenling Li ; Yingmin Jia
Author_Institution :
Beihang Univ. (BUAA), Beijing, China
Volume :
51
Issue :
3
fYear :
2015
fDate :
7/1/2015 12:00:00 AM
Firstpage :
1811
Lastpage :
1825
Abstract :
We present an information theoretic approach to develop an interacting multiple model (IMM) estimator. In the mixing and output steps of the proposed estimator, the weighted Kullback-Leibler (KL) divergence is used to derive the fusion of conditional probability density functions. A lower bound and an upper bound are derived for the error covariance of controllable and observable Markov jump linear systems. Simulation results are provided to verify the effectiveness of the proposed estimator.
Keywords :
Markov processes; estimation theory; probability; Markov jump linear systems; error covariance; interacting multiple model estimation; probability density functions; weighted Kullback-Leibler divergence; Approximation algorithms; Approximation methods; Estimation; Gaussian distribution; Linear systems; Markov processes; Probability density function;
fLanguage :
English
Journal_Title :
Aerospace and Electronic Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9251
Type :
jour
DOI :
10.1109/TAES.2015.140542
Filename :
7272832
Link To Document :
بازگشت