Title :
Comparing performance bounds for chi-square monitors with parameter uncertainty
Author_Institution :
Tufts Univ., Medford, MA, USA
fDate :
7/1/2015 12:00:00 AM
Abstract :
This paper compares methods for evaluating the performance of chi-square monitors while conservatively accounting for parameter uncertainty. Chi-square monitors, like the signal deformation monitors used in global positioning system augmentation, detect failures that threaten safety-critical navigation. A chi-square monitor creates a quadratic test statistic from a random vector (nominally zero mean and Gaussian distributed). Gaussian model parameters, which may be poorly characterized for a real system, strongly influence chi-square monitor performance. Through a combination of theory and simulation, it is established that tight yet conservative modeling of parameter uncertainty is possible with a generalized chi-square bound for false-alarm risk and with an ellipsoid bound for missed-detection risk.
Keywords :
Gaussian processes; random processes; risk analysis; signal detection; statistical testing; Gaussian model parameter estimation; chi-square monitor performance evaluation; ellipsoid bound; false alarm risk; missed detection risk; parameter uncertainty; quadratic test statistic; random vector; Covariance matrices; Eigenvalues and eigenfunctions; Ellipsoids; Global Positioning System; Monitoring; Noise; Optimization;
Journal_Title :
Aerospace and Electronic Systems, IEEE Transactions on
DOI :
10.1109/TAES.2015.140638