DocumentCode :
3607035
Title :
Remote Sensing Image Classification Exploiting Multiple Kernel Learning
Author :
Cusano, Claudio ; Napoletano, Paolo ; Schettini, Raimondo
Author_Institution :
Dept. of Electr., Comput. & Biomed. Eng., Univ. of Pavia, Pavia, Italy
Volume :
12
Issue :
11
fYear :
2015
Firstpage :
2331
Lastpage :
2335
Abstract :
We propose a strategy for land use classification, which exploits multiple kernel learning (MKL) to automatically determine a suitable combination of a set of features without requiring any heuristic knowledge about the classification task. We present a novel procedure that allows MKL to achieve good performance in the case of small training sets. Experimental results on publicly available data sets demonstrate the feasibility of the proposed approach.
Keywords :
geophysical techniques; image classification; land use; remote sensing; kernel learning; land use classification; remote sensing image classification; Accuracy; Kernel; Optimization; Remote sensing; Satellites; Standards; Training; Multiple kernel learning (MKL); remote sensing image classification;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing Letters, IEEE
Publisher :
ieee
ISSN :
1545-598X
Type :
jour
DOI :
10.1109/LGRS.2015.2476365
Filename :
7277007
Link To Document :
بازگشت