DocumentCode :
3607049
Title :
On the Number of Interference Alignment Solutions for the K -User MIMO Channel With Constant Coefficients
Author :
Gonzalez, Oscar ; Beltran, Carlos ; Santamaria, Ignacio
Author_Institution :
Commun. Eng. Dept., Univ. of Cantabria, Santander, Spain
Volume :
61
Issue :
11
fYear :
2015
Firstpage :
6028
Lastpage :
6048
Abstract :
In this paper, we study the number of different interference alignment (IA) solutions in a K-user multiple-input multiple-output (MIMO) interference channel, when the alignment is performed via beamforming and no symbol extensions are allowed. We focus on the case where the number of IA equations matches the number of variables. In this situation, the number of IA solutions is finite and constant for any channel realization out of a zero-measure set and, as we prove in this paper, it is given by an integral formula that can be numerically approximated using Monte Carlo integration methods. More precisely, the number of alignment solutions is the scaled average of the determinant of a certain Hermitian matrix related to the geometry of the problem. Interestingly, while the value of this determinant at an arbitrary point can be used to check the feasibility of the IA problem, its average (properly scaled) gives the number of solutions. For single-beam systems, the asymptotic growth rate of the number of solutions is analyzed and some connections with classical combinatorial problems are presented. Nonetheless, our results can be applied to arbitrary interference MIMO networks, with any number of users, antennas, and streams per user.
Keywords :
Hermitian matrices; MIMO communication; Monte Carlo methods; array signal processing; combinatorial mathematics; multiuser channels; radiofrequency interference; wireless channels; Hermitian matrix; IA solution; K-user MIMO channel; K-user multiple input multiple output interference channel; Monte Carlo integration method; beamforming; combinatorial problem; constant coefficient; interference alignment solution; single-beam system; Geometry; Interference channels; MIMO; Mathematical model; Polynomials; Receivers; Algebraic Geometry; Interference Alignment; Interference alignment; MIMO Interference Channel; MIMO interference channel; Polynomial Equations; algebraic geometry; polynomial equations;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2015.2482493
Filename :
7277032
Link To Document :
بازگشت