DocumentCode :
3608419
Title :
Nonlinear Electronic/Photonic Component Modeling Using Adjoint State-Space Dynamic Neural Network Technique
Author :
Sadrossadat, Sayed Alireza ; Gunupudi, Pavan ; Qi-Jun Zhang
Author_Institution :
Dept. of Electron., Carleton Univ., Ottawa, ON, Canada
Volume :
5
Issue :
11
fYear :
2015
Firstpage :
1679
Lastpage :
1693
Abstract :
In this paper, an adjoint state-space dynamic neural network method for modeling nonlinear circuits and components is presented. This method is used for modeling the transient behavior of the nonlinear electronic and photonic components. The proposed technique is an extension of the existing state-space dynamic neural network (SSDNN) technique. The new method simultaneously adds the derivative information to the training patterns of nonlinear components, allowing the training to be done with less data without sacrificing model accuracy, and, consequently, makes training faster and more efficient. In addition, this method has been formulated such that it can be suitable for the parallel computation. The use of derivative information and parallelization makes training using the proposed technique much faster than the SSDNN. In addition, the models created using the proposed method are much faster to evaluate compared with the conventional models present in traditional circuit simulation tools. The validity of the proposed technique is demonstrated through the transient modeling of the physics-based CMOS driver, commercial NXP´s 74LVC04A inverting buffer, and nonlinear photonic components.
Keywords :
integrated circuit modelling; neural nets; parallel programming; adjoint state-space dynamic neural network technique; nonlinear circuits; nonlinear electronic component modeling; nonlinear photonic component modeling; transient behavior; Computational modeling; Integrated circuit modeling; Mathematical model; Neural networks; Photonics; Training; Transient analysis; Microelectronic circuit modeling; neural networks; nonlinear behavioral modeling; parallel programming; photonic device modeling; sensitivity analysis; transient analysis; transient analysis.;
fLanguage :
English
Journal_Title :
Components, Packaging and Manufacturing Technology, IEEE Transactions on
Publisher :
ieee
ISSN :
2156-3950
Type :
jour
DOI :
10.1109/TCPMT.2015.2484284
Filename :
7299285
Link To Document :
بازگشت