Title :
Optimal placement of static compensators for multi-objective voltage stability enhancement of power systems
Author :
Yan Xu ; Zhao Yang Dong ; Chixin Xiao ; Rui Zhang ; Kit Po Wong
Author_Institution :
Hunan Provincial Key Lab. of Smart Grids Oper. & Control, Changsha Univ. of Sci. & Technol., Changsha, China
Abstract :
Static compensators (STATCOMs) are able to provide rapid and dynamic reactive power support within a power system for voltage stability enhancement. While most of previous research focuses on only an either static or dynamic (short-term) voltage stability criterion, this study proposes a multi-objective programming (MOP) model to simultaneously minimise (i) investment cost, (ii) unacceptable transient voltage performance, and (iii) proximity to steady-state voltage collapse. The model aims to find Pareto optimal solutions for flexible and multi-objective decision-making. To account for multiple contingencies and their probabilities, corresponding risk-based metrics are proposed based on respective voltage stability measures. Given the two different voltage stability criteria, a strategy based on Pareto frontier is designed to identify critical contingencies and candidate buses for STATCOM connection. Finally, to solve the MOP model, an improved decomposition-based multi-objective evolutionary algorithm is developed. The proposed model and algorithm are demonstrated on the New England 39-bus test system, and compared with state-of-the-art solution algorithms.
Keywords :
Pareto optimisation; cost reduction; evolutionary computation; power system dynamic stability; power system economics; power system reliability; power system security; power system transient stability; probability; risk management; stability criteria; static VAr compensators; voltage regulators; MOP model; New England 39-bus test system; Pareto optimal solutions; decomposition-based multiobjective evolutionary algorithm; dynamic reactive power support; investment cost minimisation; multiobjective decision-making; multiobjective programming model; multiobjective voltage stability enhancement; multiple contingencies; optimal static compensators placement; power system; proximity minimisation; risk-based metrics; steady-state voltage collapse; unacceptable transient voltage performance minimisation; voltage stability criteria; voltage stability measures;
Journal_Title :
Generation, Transmission Distribution, IET
DOI :
10.1049/iet-gtd.2015.0070