Title :
High-Efficiency CdZnTe Gamma-Ray Detectors
Author :
Bolotnikov, A.E. ; Ackley, K. ; Camarda, G.S. ; Cui, Y. ; Eger, J.F. ; De Geronimo, G. ; Finfrock, C. ; Fried, J. ; Hossain, A. ; Lee, W. ; Prokesch, M. ; Petryk, M. ; Reiber, J.L. ; Roy, U. ; Vernon, E. ; Yang, G. ; James, R.B.
Author_Institution :
Brookhaven Nat. Lab., Upton, NY, USA
Abstract :
The longer electron lifetime of today´s CdZnTe (CZT) crystals allows for free carriers to travel longer distances in the crystals, which means that, in principle, thicker devices could be fabricated. These thicker CZT devices would offer greater detection efficiency for high-energy gamma-ray detectors. However, up to now, the thicknesses and sizes of actual detectors have still been limited by the nonuniform detector response, and the biggest devices reported in the literature are (20×20×15)-mm3 pixelated detectors with a drift distance of 15 mm. Although thicker and bigger single crystals are becoming available today, the high requirements on their crystal quality drastically reduce their acceptance yield and increase their cost. Fortunately, in many cases, the inhomogeneity in response can be corrected by segmenting the active volumes of the detectors and correcting the responses generated from each of the voxels. Such high-granularity position-sensitive detectors open up the opportunity for using thicker and less-expensive CZT crystals. The goal of this work is to demonstrate that today´s commercial high electron mobility-lifetime CZT material is suitable for a new class of detectors with 20-25-mm drift distances and even larger in the near future, provided that the detectors´ response nonuniformities can be corrected on a scale comparable to or larger than the sizes of the electron clouds, which is ~ 100 μm.
Keywords :
position sensitive particle detectors; semiconductor counters; CdZnTe crystals; distance 20 mm to 25 mm; drift distance; high-efficiency CdZnTe gamma-ray detectors; high-electron mobility-lifetime CZT material; high-energy gamma-ray detectors; high-granularity position-sensitive detectors; Crystals; Detectors; Gamma-ray detectors; Image quality; Nonhomogeneous media; CdZnTe; charge-loss correction; crystal defects; virtual Frisch-grid detectors;
Journal_Title :
Nuclear Science, IEEE Transactions on
DOI :
10.1109/TNS.2015.2493444