DocumentCode :
3630294
Title :
Definition extraction: Improving Balanced Random Forests
Author :
Lukasz Degorski;Lukasz Kobylinski;Adam Przepiorkowski
Author_Institution :
Institute of Computer Science, Polish Academy of Sciences, ul. J. K. Ordona 21, 01-237 Warszawa, Poland
fYear :
2008
Firstpage :
353
Lastpage :
357
Abstract :
The article discusses methods of improving the ways of applying Balanced Random Forests (BRFs), a machine learning classification algorithm, used to extract definitions from written texts. These methods include different approaches to selecting attributes, optimising the classifier prediction threshold for the task of definition extraction and initial filtering by a very simple grammar.
Keywords :
"Computer science","Animals","Filtering","Electronic learning","Radio frequency","Information technology","Data mining","Machine learning","Classification algorithms","Machine learning algorithms"
Publisher :
ieee
Conference_Titel :
Computer Science and Information Technology, 2008. IMCSIT 2008. International Multiconference on
Print_ISBN :
978-83-60810-14-9
Type :
conf
DOI :
10.1109/IMCSIT.2008.4747264
Filename :
4747264
Link To Document :
بازگشت