DocumentCode :
3632021
Title :
Motion based clustering of model animations using PCA
Author :
Kivanc Kose;A. Enis Cetin
Author_Institution :
Elektrik Elektronik M?hendisli?i B?l?m?, Bilkent ?niversitesi, Ankara, T?rkiye
fYear :
2009
fDate :
4/1/2009 12:00:00 AM
Firstpage :
317
Lastpage :
320
Abstract :
In the last few years, there is great increase in capture and representation of real 3-Dimensonal scenes using 3D animation models. The 3D signals are then compressed, transmitted to the client side and reconstructed for the user view. Each step mentioned here opened a new subject in the field of signal processing. While processing these models, using the model as a whole is not the best approach. Therefore clustering the model vertices became a very common method. For example, it is very common to use motion based clustering in animation compression. In this paper a new dynamic model clustering algorithm is proposed. Animation vertices are first put through PCA and partitioned into their eigenvalues and eigenvectors. The eigenvectors found using the proposed method can be called eigentrajectories. Then the dot product of the these eigentrajectories with the trajectories of the animation vertice are found. These coefficients are used to cluster the animation model. The results and the comparisons with a similar approach show that the proposed algorithm is successful.
Keywords :
"Animation","Principal component analysis","Signal processing algorithms","Geometry","Clustering algorithms","Videos","Fuzzy logic","Layout","Image reconstruction","Heuristic algorithms"
Publisher :
ieee
Conference_Titel :
Signal Processing and Communications Applications Conference, 2009. SIU 2009. IEEE 17th
ISSN :
2165-0608
Print_ISBN :
978-1-4244-4435-9
Type :
conf
DOI :
10.1109/SIU.2009.5136396
Filename :
5136396
Link To Document :
بازگشت