DocumentCode :
3643230
Title :
Automatic photo-to-terrain alignment for the annotation of mountain pictures
Author :
Lionel Baboud;Martin Čadík;Elmar Eisemann;Hans-Peter Seidel
Author_Institution :
Max-Planck Institute Informatik
fYear :
2011
fDate :
6/1/2011 12:00:00 AM
Firstpage :
41
Lastpage :
48
Abstract :
We present a system for the annotation and augmentation of mountain photographs. The key issue resides in the registration of a given photograph with a 3D georeferenced terrain model. Typical outdoor images contain little structural information, particularly mountain scenes whose aspect changes drastically across seasons and varying weather conditions. Existing approaches usually fail on such difficult scenarios. To avoid the burden of manual registration, we propose a novel automatic technique. Given only a viewpoint and FOV estimates, the technique is able to automatically derive the pose of the camera relative to the geometric terrain model. We make use of silhouette edges, which are among most reliable features that can be detected in the targeted situations. Using an edge detection algorithm, our technique then searches for the best match with silhouette edges rendered using the synthetic model. We develop a robust matching metric allowing us to cope with the inevitable noise affecting detected edges (e.g. due to clouds, snow, rocks, forests, or any phenomenon not encoded in the digital model). Once registered against the model, photographs can easily be augmented with annotations (e.g. topographic data, peak names, paths), which would otherwise imply a tedious fusion process. We further illustrate various other applications, such as 3D model-assisted image enhancement, or, inversely, texturing of digital models.
Keywords :
"Image edge detection","Cameras","Robustness","Measurement","Three dimensional displays","Solid modeling","Global Positioning System"
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on
ISSN :
1063-6919
Print_ISBN :
978-1-4577-0394-2
Type :
conf
DOI :
10.1109/CVPR.2011.5995727
Filename :
5995727
Link To Document :
بازگشت