DocumentCode :
3643821
Title :
Heart failure hospitalization prediction in remote patient management systems
Author :
M. Pechenizkiy;E. Vasilyeva;I. Žliobaitė;A. Tesanovic;G. Manev
Author_Institution :
Department of Computer Science, P.O. Box 513, 5600 MB, TU Eindhoven the Netherlands
fYear :
2010
Firstpage :
44
Lastpage :
49
Abstract :
Healthcare systems are shifting from patient care in hospitals to monitored care at home. It is expected to improve the quality of care without exploding the costs. Remote patient management (RPM) systems offer a great potential in monitoring patients with chronic diseases, like heart failure or diabetes. Patient modeling in RPM systems opens opportunities in two broad directions: personalizing information services, and alerting medical personnel about the changing conditions of a patient. In this study we focus on heart failure hospitalization (HFH) prediction, which is a particular problem of patient modeling for alerting. We formulate a short term HFH prediction problem and show how to address it with a data mining approach. We emphasize challenges related to the heterogeneity, different types and periodicity of the data available in RPM systems. We present an experimental study on HFH prediction using, which results lay a foundation for further studies and implementation of alerting and personalization services in RPM systems.
Keywords :
"Medical diagnostic imaging","Support vector machines","Heart","Monitoring","Training","Biomedical monitoring","Face"
Publisher :
ieee
Conference_Titel :
Computer-Based Medical Systems (CBMS), 2010 IEEE 23rd International Symposium on
ISSN :
1063-7125
Print_ISBN :
978-1-4244-9167-4
Type :
conf
DOI :
10.1109/CBMS.2010.6042612
Filename :
6042612
Link To Document :
بازگشت