DocumentCode :
3646702
Title :
Mesh learning approach for brain data modeling
Author :
Orhan Fırat;Mete Özay;Itır Önal;İlke Öztekin;Fatoş T. Yarman Vural
Author_Institution :
Bilgisayar Mü
fYear :
2012
fDate :
4/1/2012 12:00:00 AM
Firstpage :
1
Lastpage :
4
Abstract :
The major goal of this study is to model the memory process using neural activation patterns in the brain. To achieve this goal, neural activation was acquired using functional Magnetic Resonance Imaging (fMRI) during memory encoding and retrieval. fMRI are known are trained for each class using a learning system. The most important component of this learning system is feature space. In this project, an original feature space for the fMRI data is proposed. This feature space is defined by a mesh network which models the relationship between voxels. In the suggested mesh network, the distance between voxels is determined by using physical and functional neighborhood concepts. For the functional neighborhood, the similarities between the time series, gained from voxels, are measured. With the proposed method, a data set with 10 classes is used for the encoding and retrieval processes, and the classifier is trained with the learning algorithms in order to predict the class the data belongs.
Keywords :
"Magnetic resonance imaging","Brain models","Encoding","Learning systems","Mesh networks","Interference"
Publisher :
ieee
Conference_Titel :
Signal Processing and Communications Applications Conference (SIU), 2012 20th
Print_ISBN :
978-1-4673-0055-1
Type :
conf
DOI :
10.1109/SIU.2012.6204798
Filename :
6204798
Link To Document :
بازگشت