• DocumentCode
    36584
  • Title

    A Recursive Local Linear Estimator for Identification of Nonlinear ARX Systems: Asymptotical Convergence and Applications

  • Author

    Wenxiao Zhao ; Wei Xing Zheng ; Er-Wei Bai

  • Author_Institution
    Key Lab. of Syst. & Control, Acad. of Math. & Syst. Sci., Beijing, China
  • Volume
    58
  • Issue
    12
  • fYear
    2013
  • fDate
    Dec. 2013
  • Firstpage
    3054
  • Lastpage
    3069
  • Abstract
    In this paper, we propose a recursive local linear estimator (RLLE) for nonparametric identification of nonlinear autoregressive systems with exogenous inputs (NARX). First, the RLLE is introduced. Next, the strong consistency as well as the asymptotical mean square error properties of the RLLE are established, and then an application of the RLLE to an additive nonlinear system is discussed. The RLLE provides recursive estimates not only for the function values but also their gradients at fixed points. A simulation example is provided to confirm the theoretical analysis.
  • Keywords
    mean square error methods; nonlinear systems; recursive estimation; NARX; RLLE; additive nonlinear system; asymptotical mean square error properties; nonlinear ARX system identification; nonlinear autoregressive systems with exogenous inputs; nonparametric identification; recursive local linear estimator; Additives; Bandwidth; Convergence; Educational institutions; Kernel; Nonlinear systems; Standards; Additive nonlinear system; almost sure convergence; local linear estimator; nonlinear autoregressive systems with exogenous inputs (NARX) system; recursive identification;
  • fLanguage
    English
  • Journal_Title
    Automatic Control, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9286
  • Type

    jour

  • DOI
    10.1109/TAC.2013.2273283
  • Filename
    6558780