DocumentCode :
36625
Title :
CUSHAW2-GPU: Empowering Faster Gapped Short-Read Alignment Using GPU Computing
Author :
Yongchao Liu ; Schmidt, Bertil
Author_Institution :
Inst. fur Inf., Johannes Gutenberg Univ. Mainz, Mainz, Germany
Volume :
31
Issue :
1
fYear :
2014
fDate :
Feb. 2014
Firstpage :
31
Lastpage :
39
Abstract :
We present CUSHAW2-GPU to accelerate the CUSHAW2 algorithm using compute unified device architecture (CUDA)-enabled GPUs. Two critical GPU computing techniques, namely intertask hybrid CPU-GPU parallelism and tile-based Smith-Waterman map backtracking using CUDA, are investigated to facilitate fast alignments. By aligning both simulated and real reads to the human genome, our aligner yields comparable or better performance compared to BWA-SW, Bowtie2, and GEM. Furthermore, CUSHAW2-GPU with a Tesla K20c GPU achieves significant speedups over the multithreaded CUSHAW2, BWA-SW, Bowtie2, and GEM on the 12 cores of a high-end CPU for both single-end and paired-end alignment.
Keywords :
biology computing; genomics; graphics processing units; molecular biophysics; parallel architectures; CUDA; CUSHAW2-GPU; GPU computing; compute unified device architecture; gapped short-read alignment; graphics processing unit; human genome; intertask hybrid CPU-GPU parallelism; next-generation sequencing; tile-based Smith-Waterman map backtracking; Accelerators; Bioinformatics; Computational biology; Genomics; Graphics processing units; Hardware; Message systems; Parallel processing; Runtime; CUDA; GPU; Next-generation sequencing; Short-read alignment;
fLanguage :
English
Journal_Title :
Design & Test, IEEE
Publisher :
ieee
ISSN :
2168-2356
Type :
jour
DOI :
10.1109/MDAT.2013.2284198
Filename :
6617698
Link To Document :
بازگشت