Title :
A robust Chinese Remainder Theorem with applications in error correction coding
Author :
Li Xiao; Xiang-Gen Xia
Author_Institution :
Dept. of Electr. &
fDate :
6/1/2015 12:00:00 AM
Abstract :
This paper investigates polynomial remainder codes with non-pairwise coprime moduli. We first propose a robust reconstruction for polynomials from erroneous residues when the degrees of all residue errors are small, namely robust Chinese Remainder Theorem (CRT) for polynomials. It basically says that a polynomial can be reconstructed from erroneous residues such that the degree of the reconstruction error is upper bounded by τ whenever the degrees of all residue errors are upper bounded by τ, where a sufficient condition for τ and a reconstruction algorithm are obtained. By relaxing the constraint that all residue errors have small degrees, another robust reconstruction is then presented when there are multiple unrestricted errors and an arbitrary number of errors with small degrees in the residues. By making full use of redundancy in moduli, we obtain a stronger residue error correction capability in the sense that apart from the number of errors that can be corrected in the previous existing result, some errors with small degrees can be also corrected in the residues. With this newly obtained result, improvements in uncorrected error probability and burst error correction capability in a data transmission are illustrated.
Keywords :
"Polynomials","Robustness","Decoding","Error correction codes","Error correction","Error probability","Encoding"
Conference_Titel :
Information Theory (ISIT), 2015 IEEE International Symposium on
Electronic_ISBN :
2157-8117
DOI :
10.1109/ISIT.2015.7282441