Title :
Cost-Driven Scheduling for Deadline-Constrained Workflow on Multi-clouds
Author :
Bing Lin;Wenzhong Guo;Guolong Chen;Naixue Xiong;Rongrong Li
Author_Institution :
Coll. of Math. &
fDate :
5/1/2015 12:00:00 AM
Abstract :
The tremendous parallel computing ability of Cloud computing as a new service provisioning paradigm encourages investigators to research its drawbacks and advantages on processing large-scale scientific applications such as workflows. The current Cloud market is composed of numerous diverse Cloud providers and workflow scheduling is one of the biggest challenges on Multi-Clouds. However, the existing works fail to either satisfy the Quality of Service (QoS) requirements of end users or involve some fundamental principles of Cloud computing such as pay-as-you-go pricing model and heterogeneous computing resources. In this paper, we adapt the Partial Critical Paths algorithm (PCPA) for the multi-cloud environment and propose a scheduling strategy for scientific workflow, called Multi-Cloud Partial Critical Paths (MCPCP), which aims to minimize the execution cost of workflow while satisfying the defined deadline constrain. Our approach takes into account the essential characteristics on Multi-Clouds such as charge per time interval, various instance types from different Cloud providers as well as homogeneous intra-bandwidth vs. Heterogeneous inter-bandwidth. Various well-know workflows are used for evaluating our strategy and the experimental results show that the proposed approach has a good performance on Multi-Clouds.
Keywords :
"Scheduling","Schedules","Cloud computing","Processor scheduling","Data transfer","Quality of service","Bandwidth"
Conference_Titel :
Parallel and Distributed Processing Symposium Workshop (IPDPSW), 2015 IEEE International
DOI :
10.1109/IPDPSW.2015.56