DocumentCode :
3672217
Title :
From captions to visual concepts and back
Author :
Hao Fang;Saurabh Gupta;Forrest Iandola;Rupesh K. Srivastava;Li Deng;Piotr Dollár;Jianfeng Gao;Xiaodong He;Margaret Mitchell;John C. Platt;C. Lawrence Zitnick;Geoffrey Zweig
Author_Institution :
Microsoft Research, Beijing 100080, China
fYear :
2015
fDate :
6/1/2015 12:00:00 AM
Firstpage :
1473
Lastpage :
1482
Abstract :
This paper presents a novel approach for automatically generating image descriptions: visual detectors, language models, and multimodal similarity models learnt directly from a dataset of image captions. We use multiple instance learning to train visual detectors for words that commonly occur in captions, including many different parts of speech such as nouns, verbs, and adjectives. The word detector outputs serve as conditional inputs to a maximum-entropy language model. The language model learns from a set of over 400,000 image descriptions to capture the statistics of word usage. We capture global semantics by re-ranking caption candidates using sentence-level features and a deep multimodal similarity model. Our system is state-of-the-art on the official Microsoft COCO benchmark, producing a BLEU-4 score of 29.1%. When human judges compare the system captions to ones written by other people on our held-out test set, the system captions have equal or better quality 34% of the time.
Keywords :
"Training","Detectors","Semantics","Visualization","Neural networks","Training data","Measurement"
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on
Electronic_ISBN :
1063-6919
Type :
conf
DOI :
10.1109/CVPR.2015.7298754
Filename :
7298754
Link To Document :
بازگشت