DocumentCode
3672280
Title
Learning similarity metrics for dynamic scene segmentation
Author
Damien Teney;Matthew Brown;Dimitry Kit;Peter Hall
Author_Institution
Carnegie Mellon University, USA
fYear
2015
fDate
6/1/2015 12:00:00 AM
Firstpage
2084
Lastpage
2093
Abstract
This paper addresses the segmentation of videos with arbitrary motion, including dynamic textures, using novel motion features and a supervised learning approach. Dynamic textures are commonplace in natural scenes, and exhibit complex patterns of appearance and motion (e.g. water, smoke, swaying foliage). These are difficult for existing segmentation algorithms, often violate the brightness constancy assumption needed for optical flow, and have complex segment characteristics beyond uniform appearance or motion. Our solution uses custom spatiotemporal filters that capture texture and motion cues, along with a novel metric-learning framework that optimizes this representation for specific objects and scenes. This is used within a hierarchical, graph-based segmentation setting, yielding state-of-the-art results for dynamic texture segmentation. We also demonstrate the applicability of our approach to general object and motion segmentation, showing significant improvements over unsupervised segmentation and results comparable to the best task specific approaches.
Keywords
Histograms
Publisher
ieee
Conference_Titel
Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on
Electronic_ISBN
1063-6919
Type
conf
DOI
10.1109/CVPR.2015.7298820
Filename
7298820
Link To Document