Title :
Probability occupancy maps for occluded depth images
Author :
Timur Bagautdinov;François Fleuret;Pascal Fua
fDate :
6/1/2015 12:00:00 AM
Abstract :
We propose a novel approach to computing the probabilities of presence of multiple and potentially occluding objects in a scene from a single depth map. To this end, we use a generative model that predicts the distribution of depth images that would be produced if the probabilities of presence were known and then to optimize them so that this distribution explains observed evidence as closely as possible. This allows us to exploit very effectively the available evidence and outperform state-of-the-art methods without requiring large amounts of data, or without using the RGB signal that modern RGB-D sensors also provide.
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on
Electronic_ISBN :
1063-6919
DOI :
10.1109/CVPR.2015.7298900