DocumentCode :
3672445
Title :
Semantic object segmentation via detection in weakly labeled video
Author :
Yu Zhang;Xiaowu Chen; Jia Li; Chen Wang; Changqun Xia
Author_Institution :
State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, China
fYear :
2015
fDate :
6/1/2015 12:00:00 AM
Firstpage :
3641
Lastpage :
3649
Abstract :
Semantic object segmentation in video is an important step for large-scale multimedia analysis. In many cases, however, semantic objects are only tagged at video-level, making them difficult to be located and segmented. To address this problem, this paper proposes an approach to segment semantic objects in weakly labeled video via object detection. In our approach, a novel video segmentation-by-detection framework is proposed, which first incorporates object and region detectors pre-trained on still images to generate a set of detection and segmentation proposals. Based on the noisy proposals, several object tracks are then initialized by solving a joint binary optimization problem with min-cost flow. As such tracks actually provide rough configurations of semantic objects, we thus refine the object segmentation while preserving the spatiotemporal consistency by inferring the shape likelihoods of pixels from the statistical information of tracks. Experimental results on Youtube-Objects dataset and SegTrack v2 dataset demonstrate that our method outperforms state-of-the-arts and shows impressive results.
Keywords :
"Proposals","Semantics","Shape","Image segmentation","Noise measurement","Object segmentation","Detectors"
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on
Electronic_ISBN :
1063-6919
Type :
conf
DOI :
10.1109/CVPR.2015.7298987
Filename :
7298987
Link To Document :
بازگشت