DocumentCode :
3672447
Title :
Project-Out Cascaded Regression with an application to face alignment
Author :
Georgios Tzimiropoulos
Author_Institution :
School of Computer Science, University of Nottingham, U.K.
fYear :
2015
fDate :
6/1/2015 12:00:00 AM
Firstpage :
3659
Lastpage :
3667
Abstract :
Cascaded regression approaches have been recently shown to achieve state-of-the-art performance for many computer vision tasks. Beyond its connection to boosting, cascaded regression has been interpreted as a learning-based approach to iterative optimization methods like the Newton´s method. However, in prior work, the connection to optimization theory is limited only in learning a mapping from image features to problem parameters. In this paper, we consider the problem of facial deformable model fitting using cascaded regression and make the following contributions: (a) We propose regression to learn a sequence of averaged Jacobian and Hessian matrices from data, and from them descent directions in a fashion inspired by Gauss-Newton optimization. (b) We show that the optimization problem in hand has structure and devise a learning strategy for a cascaded regression approach that takes the problem structure into account. By doing so, the proposed method learns and employs a sequence of averaged Jacobians and descent directions in a subspace orthogonal to the facial appearance variation; hence, we call it Project-Out Cascaded Regression (PO-CR). (c) Based on the principles of PO-CR, we built a face alignment system that produces remarkably accurate results on the challenging iBUG data set outperforming previously proposed systems by a large margin. Code for our system is available from http://www.cs.nott.ac.uk/~yzt/.
Keywords :
"Shape","Jacobian matrices","Optimization","Face","Deformable models","Training","Computational modeling"
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on
Electronic_ISBN :
1063-6919
Type :
conf
DOI :
10.1109/CVPR.2015.7298989
Filename :
7298989
Link To Document :
بازگشت