Title :
Weakly supervised localization of novel objects using appearance transfer
Author :
Mrigank Rochan;Yang Wang
Author_Institution :
Department of Computer Science, University of Manitoba, Canada
fDate :
6/1/2015 12:00:00 AM
Abstract :
We consider the problem of localizing unseen objects in weakly labeled image collections. Given a set of images annotated at the image level, our goal is to localize the object in each image. The novelty of our proposed work is that, in addition to building object appearance model from the weakly labeled data, we also make use of existing detectors of some other object classes (which we call “familiar objects”). We propose a method for transferring the appearance models of the familiar objects to the unseen object. Our experimental results on both image and video datasets demonstrate the effectiveness of our approach.
Keywords :
"Semantics","Proposals","Computational modeling","Data models","Detectors","Image edge detection","Image reconstruction"
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on
Electronic_ISBN :
1063-6919
DOI :
10.1109/CVPR.2015.7299060