Title :
Local high-order regularization on data manifolds
Author :
Kwang In Kim;James Tompkin;Hanspeter Pfister;Christian Theobalt
Author_Institution :
Lancaster University, UK
fDate :
6/1/2015 12:00:00 AM
Abstract :
The common graph Laplacian regularizer is well-established in semi-supervised learning and spectral dimensionality reduction. However, as a first-order regularizer, it can lead to degenerate functions in high-dimensional manifolds. The iterated graph Laplacian enables high-order regularization, but it has a high computational complexity and so cannot be applied to large problems. We introduce a new regularizer which is globally high order and so does not suffer from the degeneracy of the graph Laplacian regularizer, but is also sparse for efficient computation in semi-supervised learning applications. We reduce computational complexity by building a local first-order approximation of the manifold as a surrogate geometry, and construct our high-order regularizer based on local derivative evaluations therein. Experiments on human body shape and pose analysis demonstrate the effectiveness and efficiency of our method.
Keywords :
"Laplace equations","Manifolds","Approximation methods","Sparse matrices","Null space","Semisupervised learning","Geometry"
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on
Electronic_ISBN :
1063-6919
DOI :
10.1109/CVPR.2015.7299186