DocumentCode :
3673167
Title :
Detecting protein complexes using gene expression biclusters
Author :
Eileen Marie Hanna;Nazar M. Zaki
Author_Institution :
College of Information Technology, United Arab Emirates University, Al Ain 17551, UAE
fYear :
2015
Firstpage :
1
Lastpage :
7
Abstract :
The importance of detecting protein complexes in protein interaction networks originates from the fact that they are key players in most cellular processes. The more complexes we identify, the better we can understand normal as well as abnormal molecular events. Despite the notable performance of the current computational methods for detecting protein complexes, questions arise regarding potential ways to improve them, in addition to ameliorative guidelines to introduce novel approaches. A close interpretation leads to the assent that the way in which protein interaction networks are initially viewed should be adjusted. These networks are dynamic in reality and it is necessary to consider this fact to enhance the detection of complexes. In this paper, we present “DyCluster”, a framework to model dynamic aspect of protein interaction networks by incorporating gene expression data, through biclustering techniques, prior to applying complex-detection algorithms. The experimental results show that DyCluster leads to higher numbers of correctly-detected complexes with better evaluation scores.
Keywords :
"Proteins","Gene expression","Data models","Clustering algorithms","Heuristic algorithms","Accuracy"
Publisher :
ieee
Conference_Titel :
Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 2015 IEEE Conference on
Type :
conf
DOI :
10.1109/CIBCB.2015.7300271
Filename :
7300271
Link To Document :
بازگشت