Title :
Analysis of transient electromagnetic interactions on nanodevices using a quantum corrected integral equation approach
Author :
Ismail E. Uysal;H. Arda Ulku;Hakan Bagci
Author_Institution :
Division of Computer, Electrical, and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
fDate :
7/1/2015 12:00:00 AM
Abstract :
Analysis of electromagnetic interactions on nanodevices can oftentimes be carried out accurately using “traditional” electromagnetic solvers. However, if a gap of sub-nanometer scale exists between any two surfaces of the device, quantum-mechanical effects including tunneling should be taken into account for an accurate characterization of the device´s response. Since the first-principle quantum simulators can not be used efficiently to fully characterize a typical-size nanodevice, a quantum corrected electromagnetic model has been proposed as an efficient and accurate alternative (R. Esteban et al., Nat. Commun., 3(825), 2012). The quantum correction is achieved through an effective layered medium introduced into the gap between the surfaces. The dielectric constant of each layer is obtained using a first-principle quantum characterization of the gap with a different dimension.
Conference_Titel :
Radio Science Meeting (Joint with AP-S Symposium), 2015 USNC-URSI
DOI :
10.1109/USNC-URSI.2015.7303392