Title :
Plasmonic enhanced optical disk reactor for wastewater treatment
Author :
Mu Ku Chen;Wen Ting Hsieh;Yu Lim Chen;I Da Chiang;Cheng Hung Chu;Din Ping Tsai
Author_Institution :
Department of Physics, National Taiwan University, Taipei 10617, Taiwan
Abstract :
A process of growing large-area plasmonic-nano-particles-decorated ZnO nanorods on the polycarbonate optical disk substrate was developed, while a corresponding photocatalytic rotational reactor was fabricated. Hydrothermal process was adapted to grow ZnO nanorods perpendicular to the optical disk substrate at relatively lower temperature. The optical disk substrate has advantages of durable property in fast rotation and high impact-resistance. The plasmonic nano-particles, in this case, silver nano-particles, were deposed on the ZnO nanorods by direct sputtering. The morphology of ZnO nanorods and plasmonic nano-particles was investigated by Scanning Electron Microscope (SEM). The photocatalytic activity of the sample was evaluated by the degradation of methyl orange (MO) as a model compound in aqueous solution, and the decomposition rate of MO molecules is monitored by the optical spectroscopy measurements. In the optimized condition, less than 10% of the MO remained in the aqueous solution after a 20-minute treatment in the rotational reactor with our sample.
Keywords :
"Zinc oxide","Optical imaging","II-VI semiconductor materials","Inductors","Optical device fabrication","Degradation","Optical films"
Conference_Titel :
RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), 2015 IEEE MTT-S 2015 International Microwave Workshop Series on
DOI :
10.1109/IMWS-BIO.2015.7303869