DocumentCode :
3675943
Title :
Estimation of tissue optical properties between different grades and stages of urothelial carcinoma using diffuse reflectance spectroscopy
Author :
Suresh Anand;Riccardo Cicchi;Fabrizio Martelli;Alfonso Crisci;Gabriella Nesi;Marco Carini;Francesco Saverio Pavone
Author_Institution :
European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Via Nello Carrara, I - 50019, Sesto Fiorentino, Italy
fYear :
2015
fDate :
5/1/2015 12:00:00 AM
Firstpage :
1
Lastpage :
3
Abstract :
The standard clinical practice for detection of bladder tumours is standard white light cystoscopy. Major concerns related to cystoscopy include its invasive, causes discomfort to the patient and also it misses flat tumors (carcinoma in situ). Recently, considerable progress has been made in the development of optical spectroscopy and imaging based on fluorescence, reflectance and Raman for disease diagnosis. The basic objective behind optical technologies to is skip the time consuming tissue pathology, to provide real time results and moreover to reduce the emotional strain on the patients waiting for the results. In this context, we propose to implement diffuse reflectance spectroscopy for staging and grading urothelial carcinoma by estimating the tissue optical properties such as absorption and reduced scattering coefficients. Tissue optical properties emulates the underlying physiological and morphological properties of the tissue. In the visible region of spectrum light absorption is dominated by hemoglobin. While light scattering is primarily due to the changes in nuclear size and density as well as from the collagen fibres. Tumour tissues exhibit considerable changes in these properties which could be quantified using reflectance spectroscopic measurements. Our study indicates a changes in the reflectance spectral profile between normal and different grades of urothelial carcinoma. Also, at wavelengths greater than 640 nm (where scattering is dominant) we found an increased intensity when compared to the normal tissues.
Keywords :
"Bladder","Cancer","Spectroscopy","Tumors","Biomedical optical imaging","Optical scattering","Optical imaging"
Publisher :
ieee
Conference_Titel :
BioPhotonics (BioPhotonics), 2015 International Conference on
Type :
conf
DOI :
10.1109/BioPhotonics.2015.7304015
Filename :
7304015
Link To Document :
بازگشت