DocumentCode :
3680255
Title :
Dynamic Token Based Improving MapReduce Performance in Cloud Computing
Author :
Mosong Zhou;Heng Chen;Xiaoshe Dong;Zhengdong Zhu
Author_Institution :
Sch. of Electron. &
fYear :
2015
Firstpage :
180
Lastpage :
186
Abstract :
In recent years, Hadoop, the open-source implementation of Google´s MapReduce, is widely used and has become the de facto standard of big data processing. A typical running environment of Hadoop is cloud computing in which resource heterogeneity is very common due to varied factors including the different hardware of nodes and the different workload on the nodes and etc. The slot-based scheduling in Hadoop causes the inefficient utilization of computing resources in cloud computing environment, which lead to the performance degradation. To solve the problem mentioned above, we propose a dynamic token based method which dynamically controls the number of tasks running on each node according to the available computing resources on a node and the resource requirement of a task. The results of evaluations show that the completion times of single jobs with the proposed method are approaching to the static optimum in the dedicated environment and better than the static optimums in the other two competitive environments. Moreover, the proposed method significantly improves the throughput of mixed workloads in all computing environments and performance in real cloud computing environment have been improved by 45.9% on average.
Keywords :
"Cloud computing","Resource management","Market research","Processor scheduling","Degradation","Dynamic scheduling","Benchmark testing"
Publisher :
ieee
Conference_Titel :
Big Data and Cloud Computing (BDCloud), 2015 IEEE Fifth International Conference on
Type :
conf
DOI :
10.1109/BDCloud.2015.46
Filename :
7310736
Link To Document :
بازگشت