DocumentCode :
3680319
Title :
Towards Traditional Simulation Models of Context Using Process Mining
Author :
Paolo Pileggi;Alejandro Rivero-Rodriguez;Ossi Nykanen
Author_Institution :
Dept. of Math., Tampere Univ. of Technol., Tampere, Finland
fYear :
2015
fDate :
6/1/2015 12:00:00 AM
Firstpage :
70
Lastpage :
75
Abstract :
Context (sensor) systems are hard to model: they require constant updating and insightful approaches, especially considering the increasing data volume, variety, and generation rate of contemporary networking paradigms, like the Internet of Things. In this paper, we argue that intelligent process models can be mined to look at the actual system activity from alternative context perspectives, i.e., Perspectives observable from the sensor attributes themselves. We explain how the close relationship between the models derived using Process Mining, and Event-Driven Simulation can be exploited to help not only better understand what is happening in such systems but also provide alternative models for the intelligent solutions they support, such as context inference. We demonstrate this using a real-world example and discuss the feasibility of extending these alternative process models to be viewed as simulation. We envision automated steps that would result in traditional simulation models of context using Process Mining.
Keywords :
"Context modeling","Context","Petri nets","Computational modeling","Hidden Markov models","Data models","Cognition"
Publisher :
ieee
Conference_Titel :
Computational Intelligence, Communication Systems and Networks (CICSyN), 2015 7th International Conference on
Type :
conf
DOI :
10.1109/CICSyN.2015.23
Filename :
7311136
Link To Document :
بازگشت