Title :
New alternatives for interference tolerant waveforms hosted on a software programmable multi-mission platform
Author :
Edward R. Beadle;Alan J. Micheals;Jim Schroeder
Author_Institution :
Advanced Systems and Technology, Harris Corporation, GCSD, Melbourne, Florida
Abstract :
We present a dynamically reconfigurable (~ seconds) combined FPGA/DSP-based system-on-chip platform to address the need for an agile multi-function/multi-mission capability in size and weight constrained applications. The highly integrated system-in-a-package (SiP) format occupies <; 2 cu inch and has been demonstrated as a key element in both MODEM and RADAR platforms. Dynamic reconfiguration is achieved via software, thus implementing a software defined payload (SDP). MODEM operation is illustrated with two novel interference resistant communication waveforms, one digital chaotic-based and the other an enhanced OFDM (eOFDM). In trials, chaotic spreading achieved interference resistance of ~ 2.5 dB over comparable direct-sequence spread spectrum approaches with an uncoded BER of 8.5 × 10-6 when received at -13 dB SNR (100 kbps). Results indicate that this waveform holds promise as a concurrent secondary user (SU) in cognitive radio or shared spectrum schemes. The eOFDM provides > 36 Mbps and > 30 dB of additional pilot tone interference margin over typical OFDM, so it is suitable as a primary user (PU) format tolerant to both interference and wireless channel distortions. Lastly, to show the mission diversity, the FPGA platform is extended to a stretch mode inverse synthetic aperture RADAR (ISAR) experimentally achieving 0.25 m slant range resolution and multiplicative noise ratio (MNR) of -23 dB using a 40 MHz/us chirp on an actual target.
Keywords :
"OFDM","Interference","Chaotic communication","Receivers","Frequency-domain analysis","Radar","Software"
Conference_Titel :
Waveform Diversity & Design Conference (WDD), 2012 International
DOI :
10.1109/WDD.2012.7311287