Title :
The polydisperse acoustic signature of rigid microbubbles
Author :
Aris Dermitzakis;Mairead B. Butler;David H. Thomas;Vassilis Sboros
Author_Institution :
Department of Medical Physics, University of Patras, Rio 26504, Greece
Abstract :
Microbubbles are used in medical ultrasound imaging as contrast agents to image the vascular bed under the mode of Ultrasound Contrast Imaging (UCI). The microbubble shell determines the acoustic response and hence the signal that is utilized to form the images in UCI. Single microbubble signals from BiSphere™ (POINT Biomedical, San Carlos, CA, USA) microbubbles were captured using a clinical ultrasound system. Three main typical responses of microbubbles were identified, a) full duration echo, b) echo with duration shorter than the incident pulse and c) echo that in part resembles that in (b) and in addition prior to that another short duration initial lower amplitude signal. These data corroborate that the shell structural and nanomechanical property provide the different responses at different microbubble sizes. These different signals present an opportunity for tracking the movement of well differentiated single microbubbles particularly with novel super-resolution imaging methods that require sparse microbubble populations.
Keywords :
"Ultrasonic imaging","Acoustics","Sociology","Statistics","Oscillators","Microscopy"
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
Electronic_ISBN :
1558-4615
DOI :
10.1109/EMBC.2015.7318318