Title :
On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification
Author :
Huijuan Yang;Siavash Sakhavi;Kai Keng Ang;Cuntai Guan
Author_Institution :
Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore 138632
Abstract :
Learning the deep structures and unknown correlations is important for the detection of motor imagery of EEG signals (MI-EEG). This study investigates the use of convolutional neural networks (CNNs) for the classification of multi-class MI-EEG signals. Augmented common spatial pattern (ACSP) features are generated based on pair-wise projection matrices, which covers various frequency ranges. We propose a frequency complementary feature map selection (FCMS) scheme by constraining the dependency among frequency bands. Experiments are conducted on BCI competition IV dataset IIa with 9 subjects. Averaged cross-validation accuracy of 68.45% and 69.27% is achieved for FCMS and all feature maps, respectively, which is significantly higher (4.53% and 5.34%) than random map selection and higher (1.44% and 2.26%) than filter-bank CSP (FBCSP). The results demonstrate that the CNNs are capable of learning discriminant, deep structure features for EEG classification without relying on the handcrafted features.
Keywords :
"Electroencephalography","Convolution","Feature extraction","Neural networks","Accuracy","Brain models"
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
Electronic_ISBN :
1558-4615
DOI :
10.1109/EMBC.2015.7318929