Title :
Mathematical modeling of tumor response to radiation: radio-sensitivity correlation with BOLD, TOLD, ΔR1 and ΔR2* investigated in large Dunning R3327-AT1 rat prostate tumors
Author :
Antonella Belfatto;Derek A. White;Zhongwei Zhang;Zhang Zhang;Pietro Cerveri;Guido Baroni;Ralph P. Mason
Author_Institution :
Department of Electronics, Information and Bioengineering, Politecnico di Milano - Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
Abstract :
Tumor response to radiation therapy can vary highly across patients. Several factors, both tumor- and environment-specific, can influence the radio-sensitivity, one of the most well-known being hypoxia. In this work, we investigated possible correlations between the radio-sensitivity parameters determined by means of a simple mathematical model of tumor volume evolution, and the MRI-based indicators of oxygenation in Dunning R3327-AT1 rats. Prior to irradiation the rats were subjected to an oxygen-breathing challenge, which was evaluated by MRI. The tumors were administered a single irradiation dose (30 Gy), while breathing air or oxygen. Despite a poor fitting performance, the model was able to identify two different tumor volume regression patterns. Moreover, the radio-sensitivity of the oxygen-breathing group was found to correlate with the variation of the transverse relaxation rate ΔR2* (-0.89). This suggests that MRI-based indices of tumor oxygenation may provide information about radio-sensitivity.
Keywords :
"Tumors","Correlation","Mathematical model","Radiation effects","Solid modeling","Magnetic resonance imaging","Rats"
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
Electronic_ISBN :
1558-4615
DOI :
10.1109/EMBC.2015.7319089