Title :
ECG De-noising: A comparison between EEMD-BLMS and DWT-NN algorithms
Author :
Kevin Kærgaard;Søren Hjøllund;Sadasivan Puthusserypady
Author_Institution :
Department of Electrical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, DENMARK
Abstract :
Electrocardiogram (ECG) is a widely used non-invasive method to study the rhythmic activity of the heart and thereby to detect the abnormalities. However, these signals are often obscured by artifacts from various sources and minimization of these artifacts are of paramount important. This paper proposes two adaptive techniques, namely the EEMD-BLMS (Ensemble Empirical Mode Decomposition in conjunction with the Block Least Mean Square algorithm) and DWT-NN (Discrete Wavelet Transform followed by Neural Network) methods in minimizing the artifacts from recorded ECG signals, and compares their performance. These methods were first compared on two types of simulated noise corrupted ECG signals: Type-I (desired ECG+noise frequencies outside the ECG frequency band) and Type-II (ECG+noise frequencies both inside and outside the ECG frequency band). Subsequently, they were tested on real ECG recordings. Results clearly show that both the methods works equally well when used on Type-I signals. However, on Type-II signals the DWT-NN performed better. In the case of real ECG data, though both methods performed similar, the DWT-NN method was a slightly better in terms of minimizing the high frequency artifacts.
Keywords :
"Electrocardiography","Discrete wavelet transforms","Signal to noise ratio","Noise reduction","Adaptive filters","Empirical mode decomposition","Neural networks"
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
Electronic_ISBN :
1558-4615
DOI :
10.1109/EMBC.2015.7319224