Title :
Classification of finger vibrotactile input using scalp EEG
Author :
Yongtian He;Jose L. Contreras-Vidal
Author_Institution :
Dept. of Electrical &
Abstract :
While there are many output brain-computer interface (output BCIs) studies, few have examined the input pathway, namely decoding the sensory input. To examine the possibility of building a BCI with sensory input using scalp electroencephalography (EEG), this study builds a classifier based on Local Fisher Discriminant Analysis (LFDA) and Gaussian Mixture Model (GMM) to classify neural activity generated by vibrotactile sensory stimuli delivered to the fingers. Small vibrators were placed on the fingertips of the participant. They vibrated one by one in a random sequence while the participant sat still with eyes closed. EEG data were recorded and later used to classify which finger was vibrated. There were two tasks: one focusing on differentiating between ipsilateral fingers, the other one focusing on differentiating contralateral fingers. Decoding accuracies were high in both tasks: 97.6% and 99.3% respectively. Event-related EEG features in both amplitude and power domain are discussed.
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
Electronic_ISBN :
1558-4615
DOI :
10.1109/EMBC.2015.7319447