Title :
Online detection of tonic-clonic seizures in pediatric patients using ECG and low-complexity incremental novelty detection
Author :
Thomas De Cooman;Anouk Van de Vel;Berten Ceulemans;Lieven Lagae;Bart Vanrumste;Sabine Van Huffel
Author_Institution :
Department of Electrical Engineering-ESAT, STADIUS, KU Leuven, Belgium
Abstract :
Home monitoring of refractory epilepsy patients has become of more interest the last couple of decades. A biomedical signal that can be used for online seizure detection at home is the electrocardiogram. Previous studies have shown that tonic-clonic seizures are most often accompanied with a strong heart rate increase. The main issue however is the strong patient-specific behavior of the ictal heart rate features, which makes it hard to make a patient-independent seizure detection algorithm. A patient-specific algorithm might be a solution, but existing methods require the availability of data of several seizures, which would make them inefficient in case the first seizure only occurs after a couple of days. Therefore an online method is described here that automatically converts from a patient-independent towards a patient-specific algorithm as more patient-specific data become available. This is done by using online feedback from the users to previously given alarms. By using a simplified one-class classifier, no seizure training data needs to be available for a good performance. The method is already able to adapt to the patient-specific characteristics after a couple of hours, and is able to detect 23 of 24 seizures longer than 10s, with an average of 0.38 false alarms per hour. Due to its low-complexity, it can be easily used for wearable seizure detection at home.
Keywords :
"Heart rate","Electrocardiography","Epilepsy","Feature extraction","Monitoring","Biomedical monitoring","Electroencephalography"
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
Electronic_ISBN :
1558-4615
DOI :
10.1109/EMBC.2015.7319661