Title :
Support vector machines using EEG features of cross-frequency coupling can predict treatment outcome in Mecp2-deficient mice
Author :
Sinisa Colic;Robert G. Wither;Min Lang;Zhang Liang;James H. Eubanks;Berj L. Bardakjian
Author_Institution :
Department of Electrical and Computer Engineering, University of Toronto, ON Canada M5S-3G4
Abstract :
Anti-convulsive drug treatments of epilepsy typically produce varied outcomes from one patient to the next, often necessitating patients to go through several anticonvulsive drug trials until an appropriate treatment is found. The focus of this study is to predict treatment outcome using a priori electroencephalogram (EEG) features for a rare genetic model of epilepsy seen in patients with Rett Syndrome. Previous work on Mecp2-deficient mice, exhibiting the symptoms of Rett syndrome, have revealed EEG-based biomarkers that track the pathology well. Specifically the presence of cross-frequency coupling of the delta-like (3-6 Hz) frequency range phase with the fast ripple (400 - 600 Hz) frequency range amplitude in long duration discharges was found to track seizure pathology. Support Vector Machines (SVM) were trained with features generated from phase-amplitude comodulograms and tested on (n=6) Mecp2-deficient mice to predict treatment outcome to Midazolam, a commonly used anti-convulsive drug. Using SVMs it was shown that it is possible to generate a likelihood score to predict treatment outcomes on all of the animal subjects. Identifying the most appropriate treatment a priori would potentially lead to improved treatment outcomes.
Keywords :
"Mice","Drugs","Modulation","Discharges (electric)","Hafnium oxide"
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
Electronic_ISBN :
1558-4615
DOI :
10.1109/EMBC.2015.7319663