Title :
Machine learning methods for credibility assessment of interviewees based on posturographic data
Author :
Sashi K. Saripalle;Spandana Vemulapalli;Gregory W. King;Judee K. Burgoon;Reza Derakhshani
Author_Institution :
Department of Electrical and Computer Engineering at University of Missouri - Kansas City, 64110, USA
Abstract :
This paper discusses the advantages of using posturographic signals from force plates for non-invasive credibility assessment. The contributions of our work are two fold: first, the proposed method is highly efficient and non invasive. Second, feasibility for creating an autonomous credibility assessment system using machine-learning algorithms is studied. This study employs an interview paradigm that includes subjects responding with truthful and deceptive intent while their center of pressure (COP) signal is being recorded. Classification models utilizing sets of COP features for deceptive responses are derived and best accuracy of 93.5% for test interval is reported.
Keywords :
"Sensitivity","Support vector machines","Force","Feature extraction","Kernel","Polynomials","Accuracy"
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
Electronic_ISBN :
1558-4615
DOI :
10.1109/EMBC.2015.7319932