• DocumentCode
    3685508
  • Title

    How to extract clinically useful information from large amount of dialysis related stored data

  • Author

    Domenico Vito;Giustina Casagrande;Camilla Bianchi;Maria L. Costantino

  • Author_Institution
    Department of Chemistry, Materials and Chemical Engineering ‘
  • fYear
    2015
  • Firstpage
    6812
  • Lastpage
    6815
  • Abstract
    The basic storage infrastructure used to gather data from the technological evolution also in the healthcare field was leading to the storing into public or private repository of even higher quantities of data related to patients and their pathological evolution. Big data techniques are spreading also in medical research. By these techniques is possible extract information from complex heterogeneous sources, realizing longitudinal studies focused to correlate the patient status with biometric parameters. In our work we develop a common data infrastructure involving 4 clinical dialysis centers between Lombardy and Switzerland. The common platform has been build to store large amount of clinical data related to 716 dialysis session of 70 patient. The platform is made up by a combination of a MySQL® database (Dialysis Database) and a MATLAB-based mining library (Dialysis MATlib). A statistical analysis of these data has been performed on the data gathered. These analyses led to the development of two clinical indexes, representing an example of transformation of big data into clinical information.
  • Keywords
    "Data mining","Indexes","Big data","Standards","MATLAB","Libraries"
  • Publisher
    ieee
  • Conference_Titel
    Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
  • ISSN
    1094-687X
  • Electronic_ISBN
    1558-4615
  • Type

    conf

  • DOI
    10.1109/EMBC.2015.7319958
  • Filename
    7319958