DocumentCode :
3688623
Title :
Large scale collaboration with autonomy: Decentralized data ICA
Author :
Bradley T. Baker;Rogers F. Silva;Vince D. Calhoun;Anand D. Sarwate;Sergey M. Plis
Author_Institution :
New College of Florida
fYear :
2015
Firstpage :
1
Lastpage :
6
Abstract :
Data sharing for collaborative research systems may not be able to use contemporary architectures that collect and store data in centralized data centers. Research groups often wish to control their data locally but are willing to share access to it for collaborations. This may stem from research culture as well as privacy concerns. To leverage the potential of these aggregated larger data sets, we would like tools that perform joint analyses without transmitting the data. Ideally, these analyses would have similar performance and ease of use as current team-based research structures. In this paper we design, implement, and evaluate a decentralized data independent component analysis (ICA) that meets these criteria. We validate our method on temporal ICA for functional magnetic resonance imaging (fMRI) data; this method shares only intermediate statistics and may be amenable to further privacy protections via differential privacy.
Keywords :
"Principal component analysis","Collaboration","Algorithm design and analysis","Joints","Data models","Magnetic resonance imaging","Convergence"
Publisher :
ieee
Conference_Titel :
Machine Learning for Signal Processing (MLSP), 2015 IEEE 25th International Workshop on
Type :
conf
DOI :
10.1109/MLSP.2015.7324344
Filename :
7324344
Link To Document :
بازگشت