DocumentCode :
3688859
Title :
Design and operation of a hydrogen supply chain considering CO2 mitigation strategies - A case study of the United Arab Emirates
Author :
Ali Almansoori
Author_Institution :
Department of Chemical Engineering, The Petroleum Institute (PI), P.O. Box 2533, Abu Dhabi, United Arab Emirates
fYear :
2015
Firstpage :
1
Lastpage :
5
Abstract :
A mixed integer linear programming (MILP) model for the optimal design and operation of a hydrogen supply chain (HSC) under CO2 emission constraints is presented. The mathematical model includes carbon capture and storage (CCS) methods and carbon tax as CO2 mitigation strategies. A case study of a future hydrogen supply chain in the United Arab Emirates (UAE) is analyzed. The optimization objective consists of the minimization of the total network cost, both in terms of capital and operating expenditures, under techno-economic and environmental constraints. The optimization problem was formulated in the General Algebraic Modeling System (GAMS®). The aim of this work is to determine the optimal design and operation of a future hydrogen supply chain in the United Arab Emirates with and without CO2 emission regulations. Also, the model determines the most suitable delivered product form (i.e., gaseous or liquid) into the market. The optimization results show that the mathematical model is a valuable tool for designing the optimal hydrogen supply chain of the country, minimize the supply chain costs, and reduce the CO2 emissions.
Keywords :
"Green products","Atmosphere"
Publisher :
ieee
Conference_Titel :
Smart Energy Grid Engineering (SEGE), 2015 IEEE International Conference on
Type :
conf
DOI :
10.1109/SEGE.2015.7324585
Filename :
7324585
Link To Document :
بازگشت