DocumentCode :
3689892
Title :
Land-cover classification through sequential learning-based optimum-path forest
Author :
D. Pereira;R. Pisani;R. Nakamura;J. Papa
Author_Institution :
University of Western Sã
fYear :
2015
fDate :
7/1/2015 12:00:00 AM
Firstpage :
76
Lastpage :
79
Abstract :
Sequential learning-based pattern classification aims at providing more accurate labeled maps by adding an extra step of classification using an augmented feature vector. In this paper, we evaluated the robustness of Optimum-Path Forest (OPF) classifier in the context of land-cover classification using both satellite and radar images, showing OPF can benefit from sequential learning theoretical basis.
Keywords :
"Training","Context","Prototypes","Accuracy","Robustness","Satellites","Pattern recognition"
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International
ISSN :
2153-6996
Electronic_ISBN :
2153-7003
Type :
conf
DOI :
10.1109/IGARSS.2015.7325701
Filename :
7325701
Link To Document :
بازگشت