DocumentCode :
3696737
Title :
Non-parametric Spectral Model for Shape Retrieval
Author :
Andrea Gasparetto;Giorgia Minello;Andrea Torsello
Author_Institution :
Dipt. di Sci. Ambientali, Inf. e Statistica Univ. Ca´ Foscari Venezia, Venice, Italy
fYear :
2015
Firstpage :
344
Lastpage :
352
Abstract :
Non-rigid 3D shape retrieval is an active and important research topic in content based object retrieval. This problem is often cast in terms of the shapes intrinsic geometry due to its invariance to a wide range of non-rigid deformations. In this paper, we devise a novel generative model for shape retrieval based on the spectral representation of the Laplacian of a mesh. Contrary to common use, our approach avoids the ubiquitous correspondence problem by transforming the eigenvectors of the Laplacian to a density in the spectral-embedding space which is estimated nonparametrically. We show that this model can efficiently be learned from a set of 3D meshes. The experimental results on the SHREC´14 benchmark show the effectiveness of the approach compared to the state-of-the-art.
Keywords :
"Shape","Eigenvalues and eigenfunctions","Laplace equations","Three-dimensional displays","Solid modeling","Computational modeling","Kernel"
Publisher :
ieee
Conference_Titel :
3D Vision (3DV), 2015 International Conference on
Type :
conf
DOI :
10.1109/3DV.2015.46
Filename :
7335502
Link To Document :
بازگشت