Title :
Symbiot: Congestion-Driven Multi-resource Fairness for Multi-user Sensor Networks
Author :
Yad Tahir;Shusen Yang;Usman Adeel;Julie McCann
Abstract :
In this paper, we study the problem of multi-resource fairness in multi-user sensor networks with heterogeneous and time-varying resources. Particularly we focus on data gathering applications run on Wireless Sensor Networks (WSNs) or Internet of Things (IoT) in which users require to run a serious of sensing operations with various resource requirements. We consider both the resource demands of sensing tasks, and data forwarding tasks needed to establish multi-hop relay communications. By exploiting graph theory, queueing theory and the notion of dominant resource shares, we develop Symbiot, a light-weight, distributed algorithm that ensures multi-resource fairness between these users. With Symbiot, nodes can independently schedule its resources while maintaining network-level resource fairness through observing traffic congestion levels. Large-scale simulations based Contiki OS and Cooja network emulator show the effectiveness of Symbiot in adaptively utilizing available resources and reducing average completion times.
Keywords :
"Wireless sensor networks","Resource management","Logic gates","Graph theory","Queueing analysis","Temperature sensors"
Conference_Titel :
High Performance Computing and Communications (HPCC), 2015 IEEE 7th International Symposium on Cyberspace Safety and Security (CSS), 2015 IEEE 12th International Conferen on Embedded Software and Systems (ICESS), 2015 IEEE 17th International Conference on
DOI :
10.1109/HPCC-CSS-ICESS.2015.23