Title :
A Data-Oriented Method for Scheduling Dependent Tasks on High-Density Multi-GPU Systems
Author :
Peng Zhang;Yuxiang Gao;Meikang Qiu
Author_Institution :
Biomed. Eng. Dept., Stony Brook Univ., Stony Brook, NY, USA
Abstract :
The rapidly-changing computer architectures, though improving the performance of computers, have been challenging the programming environments for efficiently harnessing the potential of novel architectures. In this area, though the high-density multi-GPU architecture enabled unparalleled performance advantage of dense GPUs in a single server, it has increased the difficulty for scheduling diversified and dependent tasks. We therefore propose a data-oriented method for scheduling dependent tasks for this architecture while providing its implementation. In our method, we model a parallel program as a collection of data-dependent tasks for which data dependencies are managed by an expressive matrix. Accordingly, we develop a hierarchical scheduler infrastructure for our model. In this, a top scheduler is built for querying the data-dependency matrix; three downstream schedulers for queuing computation tasks that are exclusively assigned to processor, accelerator or either; and a multitude of bottom schedulers each for providing a processing element with assigned tasks. We experiment our scheduler for examples of Strassen matrix multiplication and Cholesky matrix inversion algorithms on a computer that has 8 Tesla K40 GPUs. The results show that our method is capable of offering the efficient task parallelism while fulfilling the complex task dependencies. When advanced task-oriented schedulers have been widely designed for distributed systems, a lightweight data-driven scheduler could be an alternative and handy approach that can handle the dependent yet diversified tasks of data-intensive applications for the novel high-density multi-accelerator system.
Keywords :
"Computer architecture","Processor scheduling","Computers","Symmetric matrices","Partitioning algorithms","Runtime","Graphics processing units"
Conference_Titel :
High Performance Computing and Communications (HPCC), 2015 IEEE 7th International Symposium on Cyberspace Safety and Security (CSS), 2015 IEEE 12th International Conferen on Embedded Software and Systems (ICESS), 2015 IEEE 17th International Conference on
DOI :
10.1109/HPCC-CSS-ICESS.2015.314