Title :
The effects of RF impairments in vehicle-to-vehicle communications
Author :
Alexandros-Apostolos A. Boulogeorgos;Paschalis C. Sofotasios;Sami Muhaidat;Mikko Valkama;George K. Karagiannidis
Author_Institution :
Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Abstract :
Radio frequency (RF) front-ends constitute a fundamental part of both conventional and emerging wireless communication systems. However, in spite of their importance they are often assumed ideal, although they are practically subject to certain detrimental impairments, such as amplifier nonlinearities, phase noise and in phase and quadrature (I/Q) imbalance (IQI). The present work is devoted to the quantification and evaluation of the RF IQI effects in the context of realistic wireless vehicle-to-vehicle (V2V) communications over double-Nakagami-m fading channels. Novel closed form expressions are derived for the corresponding outage probability for the case of ideal transmitter (TX) and receiver (RX), ideal TX and I/Q imbalanced RX, I/Q imbalanced TX and ideal RX, and joint I/Q imbalanced TX/RX. The offered analytic results have a relatively convenient algebraic representation and their validity is extensively justified through comparisons with respective results from computer simulations. Based on these, it is shown that cascaded fading results to considerable degradations in the system performance and that assuming ideal RF front-ends at the TX and RX induces non-negligible errors in the outage probability evaluation that can exceed 20% in several V2V communication scenarios.
Keywords :
"Radio frequency","Fading","Signal to noise ratio","Wireless communication","Baseband","Context"
Conference_Titel :
Personal, Indoor, and Mobile Radio Communications (PIMRC), 2015 IEEE 26th Annual International Symposium on
DOI :
10.1109/PIMRC.2015.7343414