Abstract :
In this paper, we propose a novel secure key agreement protocol that uses biometrics with unordered set of features. Our protocol enables the user and the server to agree on a symmetric key, which is generated by utilizing only the feature points of the user´s biometrics. It means that our protocol does not generate the key randomly or it does not use any random data in the key itself. As a proof of concept, we instantiate our protocol model using fingerprints. In our protocol, we employ a threshold-based quantization mechanism, in order to group the minutiae in a predefined neighborhood. In this way, we increase the chance of user-server agreement on the same set of minutiae. Our protocol works in rounds. In each round, depending on the calculated similarity score on the common set of minutiae, the acceptance/rejection decision is made. Besides, we employ multi-criteria security analyses for our proposed protocol. These security analyses show that the generated keys possess acceptable randomness according to Shannon´s entropy. In addition, the keys, which are generated after each protocol run, are indistinguishable from each other, as measured by the Hamming distance metric. Our protocol is also robust against brute-force, replay and impersonation attacks, proven by high attack complexity and low equal error rates.
Keywords :
"Protocols","Cryptography","Servers","Iris recognition","Feature extraction"