DocumentCode
3708693
Title
Malware detection on Android smartphones using API class and machine learning
Author
Westyarian;Yusep Rosmansyah;Budiman Dabarsyah
Author_Institution
Electr. Eng. Dept., Inst. Teknol. Bandung, Bandung, Indonesia
fYear
2015
Firstpage
294
Lastpage
297
Abstract
This paper proposes a (new) method to detect malware in Android smartphones using API (application programming interface) classes. We use machine learning to classify whether an application is benign or malware. Furthermore, we compare classification precision rate from machine learning. This research uses 51 APIs package classes from 16 APIs classes and employs cross validation and percentage split test to classify benign and malware using Random Forest, J48, and Support Vector Machine algorithms. We use 412 total application samples (205 benign, 207 malware). We obtain that the classification precision average is 91.9%.
Keywords
"Malware","Androids","Humanoid robots","Support vector machines","Smart phones","Machine learning algorithms","Software"
Publisher
ieee
Conference_Titel
Electrical Engineering and Informatics (ICEEI), 2015 International Conference on
Print_ISBN
978-1-4673-6778-3
Electronic_ISBN
2155-6830
Type
conf
DOI
10.1109/ICEEI.2015.7352513
Filename
7352513
Link To Document