• DocumentCode
    3708693
  • Title

    Malware detection on Android smartphones using API class and machine learning

  • Author

    Westyarian;Yusep Rosmansyah;Budiman Dabarsyah

  • Author_Institution
    Electr. Eng. Dept., Inst. Teknol. Bandung, Bandung, Indonesia
  • fYear
    2015
  • Firstpage
    294
  • Lastpage
    297
  • Abstract
    This paper proposes a (new) method to detect malware in Android smartphones using API (application programming interface) classes. We use machine learning to classify whether an application is benign or malware. Furthermore, we compare classification precision rate from machine learning. This research uses 51 APIs package classes from 16 APIs classes and employs cross validation and percentage split test to classify benign and malware using Random Forest, J48, and Support Vector Machine algorithms. We use 412 total application samples (205 benign, 207 malware). We obtain that the classification precision average is 91.9%.
  • Keywords
    "Malware","Androids","Humanoid robots","Support vector machines","Smart phones","Machine learning algorithms","Software"
  • Publisher
    ieee
  • Conference_Titel
    Electrical Engineering and Informatics (ICEEI), 2015 International Conference on
  • Print_ISBN
    978-1-4673-6778-3
  • Electronic_ISBN
    2155-6830
  • Type

    conf

  • DOI
    10.1109/ICEEI.2015.7352513
  • Filename
    7352513