DocumentCode :
3708693
Title :
Malware detection on Android smartphones using API class and machine learning
Author :
Westyarian;Yusep Rosmansyah;Budiman Dabarsyah
Author_Institution :
Electr. Eng. Dept., Inst. Teknol. Bandung, Bandung, Indonesia
fYear :
2015
Firstpage :
294
Lastpage :
297
Abstract :
This paper proposes a (new) method to detect malware in Android smartphones using API (application programming interface) classes. We use machine learning to classify whether an application is benign or malware. Furthermore, we compare classification precision rate from machine learning. This research uses 51 APIs package classes from 16 APIs classes and employs cross validation and percentage split test to classify benign and malware using Random Forest, J48, and Support Vector Machine algorithms. We use 412 total application samples (205 benign, 207 malware). We obtain that the classification precision average is 91.9%.
Keywords :
"Malware","Androids","Humanoid robots","Support vector machines","Smart phones","Machine learning algorithms","Software"
Publisher :
ieee
Conference_Titel :
Electrical Engineering and Informatics (ICEEI), 2015 International Conference on
Print_ISBN :
978-1-4673-6778-3
Electronic_ISBN :
2155-6830
Type :
conf
DOI :
10.1109/ICEEI.2015.7352513
Filename :
7352513
Link To Document :
بازگشت